1. Введение
2. Основные структуры
- 2.1 Элементы теории множеств
- 2.2 Операции с множествами
- 2.3 Функции и способы их задания
- 2.4 Числовые последовательности
3. Пределы. Непрерывные функции
- 3.1 Предел последовательности
- 3.1.1 Определения
- 3.1.2 Арифметика пределов
- 3.1.3 Арифметика бесконечно малых
- 3.1.4 Признаки существования пределов
- 3.1.5 Вычисление пределов
- 3.1.6 Замечательный предел
- 3.2 Функции непрерывной переменной
- 3.2.1 Определения
- 3.2.2 Арифметика пределов
- 3.2.3 Арифметика бесконечно малых
- 3.2.4 Признаки существования пределов
- 3.2.5 Замечательные пределы
- 3.2.6 Список важнейших предельных соотношений
- 3.3 Непрерывные функции
- 3.3.1 Определения
- 3.3.2 Основные свойства
- 3.3.3 Разрывы функции
4. Производная, дифференциальное исчисление
- 4.1 Производная
- 4.1.1 Определение производной
- 4.1.2 Производная от элементарных функций
- 4.1.3 Производная от суммы, произведения и частного функций
- 4.1.4 Производные от сложной функции, от обратной функции, от функции, заданной параметрически
- 4.1.5 Таблица производных
- 4.2 Первый дифференциал
- 4.2.1 Определение и основные свойства первого дифференциала
- 4.2.2 Геометрический смысл первого дифференциала
- 4.2.3 Дифференциал сложной функции. Инвариантность первого дифференциала
- 4.3 Свойства дифференцируемых функций
- 4.4 Правило Лопиталя и раскрытие неопреленностей
5. Высшие производные
- 5.1 Определение и свойства высших производных
- 5.2 Определение и свойства дифференциалов высших порядков
- 5.3 Теорема Тейлора
- 5.4 Формула Тейлора для некоторых функций
6. Приложения дифференциального исчисления
- 6.1 Монотонность функции и знак ее производной
- 6.2 Достаточное условие локального максимума/минимума
- 6.3 Решение задачи о глобальном максимуме/минимуме функции на замкнутом отрезке
- 6.4 Выпуклость вверх, выпуклость вниз, точки перегиба
7. Первообразная (неопределенный интеграл)
- 7.1 Определение и основные свойства первообразных
- 7.2 Таблица основных первообразных
- 7.3 Интегрирование по частям
- 7.4 Замена переменной в первообразной
8. Техника вычисления первообразных
- 8.1 Интегралы от дробно-рациональных функций
- 8.1.1 Полиномы, основные свойства
- 8.1.2 Дробно-рациональные функции, основные свойства
- 8.1.3 Выделение целой части и разложение на простейшие для дробно-рациональных функций
- 8.1.4 Вычисление первообразной от дробно-рациональной функции
- 8.2 Интегралы от тригонометрических функций
- 8.3 Интегралы от функций, содержащих иррациональности
- 8.4 Подстановки Эйлера
- 8.5 "Неберущиеся" интегралы
9. Определенный интеграл
- 9.1 Определение
- 9.2 Геометрический смысл определенного интеграла
- 9.3 Основные свойства
- 9.4 Формула Ньютона-Лейбница
- 9.4.1 Интеграл как функция верхнего предела
- 9.4.2 Формула Барроу
- 9.4.3 Формула Ньютона-Лейбница
- 9.5 Интегрирование по частям в определенном интеграле
- 9.6 Замена переменной в определенном интеграле
10. Несобственные интегралы
- 10.1 Несобственные интегралы 1 рода
- 10.1.1 Определение и основные свойства
- 10.1.2 Признаки сходимости несобственных интегралов 1 рода
- 10.2 Несобственные интегралы 2 рода
- 10.2.1 Определение и основные свойства
- 10.2.2 Признаки сходимости несобственных интегралов 2 рода
11. Интегралы зависящие от параметра
12. Приложения определенных интегралов
4. Производная, дифференциальное исчисление
4.4 Правило Лопиталя и раскрытие неопреленностей
Рассмотрим отношение двух функций $f(x)/g(x)$. Иногда возникает ситуация, когда $f(x)\rightarrow 0$, $g(x)\rightarrow 0$ при $x \rightarrow c$, где $c$ - конечное число. В этом случае говорят о неопределенности типа $0/0$ при $x \rightarrow c$. Вычисление значения $\lim _{x \to c}f(x)/g(x)$ называется раскрытием неопределенности. Такого типа задачи можно решать с помощью следующей теоремы.
Теорема (Правило Лопиталя). Пусть $f(x), g(x)$ дифференцируемы на интервале $(a,b)$, и в некоторой точке $c\in (a,b)$ выполняются равенства: $f(c)=g(c)=0$. Предположим, что существует предел $\lim _{ x \to c} \left (f'(x)/g'(x)\right )$. Тогда существует и предел $\lim _{ x \to c}\left ( f(x)/g(x)\right )$, причем \[ \lim _{ x \to c} \frac{f(x)}{g(x)}=\lim _{ x \to c} \frac{f'(x)}{g'(x)}. \]
Доказательство.
Пример.
Имеются варианты правила Лопиталя и в том случае, когда предельная точка $c$ находится на бесконечности, и для раскрытия неопределенностей типа $\infty /\infty$.
Иногда для раскрытия неопределенности требуется применить правило Лопиталя несколько раз.
Пример.
Задачи.