1. Введение
2. Основные структуры
- 2.1 Элементы теории множеств
- 2.2 Операции с множествами
- 2.3 Функции и способы их задания
- 2.4 Числовые последовательности
3. Пределы. Непрерывные функции
- 3.1 Предел последовательности
- 3.1.1 Определения
- 3.1.2 Арифметика пределов
- 3.1.3 Арифметика бесконечно малых
- 3.1.4 Признаки существования пределов
- 3.1.5 Вычисление пределов
- 3.1.6 Замечательный предел
- 3.2 Функции непрерывной переменной
- 3.2.1 Определения
- 3.2.2 Арифметика пределов
- 3.2.3 Арифметика бесконечно малых
- 3.2.4 Признаки существования пределов
- 3.2.5 Замечательные пределы
- 3.2.6 Список важнейших предельных соотношений
- 3.3 Непрерывные функции
- 3.3.1 Определения
- 3.3.2 Основные свойства
- 3.3.3 Разрывы функции
4. Производная, дифференциальное исчисление
- 4.1 Производная
- 4.1.1 Определение производной
- 4.1.2 Производная от элементарных функций
- 4.1.3 Производная от суммы, произведения и частного функций
- 4.1.4 Производные от сложной функции, от обратной функции, от функции, заданной параметрически
- 4.1.5 Таблица производных
- 4.2 Первый дифференциал
- 4.2.1 Определение и основные свойства первого дифференциала
- 4.2.2 Геометрический смысл первого дифференциала
- 4.2.3 Дифференциал сложной функции. Инвариантность первого дифференциала
- 4.3 Свойства дифференцируемых функций
- 4.4 Правило Лопиталя и раскрытие неопреленностей
5. Высшие производные
- 5.1 Определение и свойства высших производных
- 5.2 Определение и свойства дифференциалов высших порядков
- 5.3 Теорема Тейлора
- 5.4 Формула Тейлора для некоторых функций
6. Приложения дифференциального исчисления
- 6.1 Монотонность функции и знак ее производной
- 6.2 Достаточное условие локального максимума/минимума
- 6.3 Решение задачи о глобальном максимуме/минимуме функции на замкнутом отрезке
- 6.4 Выпуклость вверх, выпуклость вниз, точки перегиба
7. Первообразная (неопределенный интеграл)
- 7.1 Определение и основные свойства первообразных
- 7.2 Таблица основных первообразных
- 7.3 Интегрирование по частям
- 7.4 Замена переменной в первообразной
8. Техника вычисления первообразных
- 8.1 Интегралы от дробно-рациональных функций
- 8.1.1 Полиномы, основные свойства
- 8.1.2 Дробно-рациональные функции, основные свойства
- 8.1.3 Выделение целой части и разложение на простейшие для дробно-рациональных функций
- 8.1.4 Вычисление первообразной от дробно-рациональной функции
- 8.2 Интегралы от тригонометрических функций
- 8.3 Интегралы от функций, содержащих иррациональности
- 8.4 Подстановки Эйлера
- 8.5 "Неберущиеся" интегралы
9. Определенный интеграл
- 9.1 Определение
- 9.2 Геометрический смысл определенного интеграла
- 9.3 Основные свойства
- 9.4 Формула Ньютона-Лейбница
- 9.4.1 Интеграл как функция верхнего предела
- 9.4.2 Формула Барроу
- 9.4.3 Формула Ньютона-Лейбница
- 9.5 Интегрирование по частям в определенном интеграле
- 9.6 Замена переменной в определенном интеграле
10. Несобственные интегралы
- 10.1 Несобственные интегралы 1 рода
- 10.1.1 Определение и основные свойства
- 10.1.2 Признаки сходимости несобственных интегралов 1 рода
- 10.2 Несобственные интегралы 2 рода
- 10.2.1 Определение и основные свойства
- 10.2.2 Признаки сходимости несобственных интегралов 2 рода
11. Интегралы зависящие от параметра
12. Приложения определенных интегралов
12. Приложения определенных интегралов
12.1. Площадь плоских фигур
Первое приложение определенных интегралов уже упоминалось выше - это вычисление площади плоских фигур. Рассмотрим сначала случай, когда фигура представлена в декартовой системе координат. Пусть фигура ограничена кривыми $y=f_1(x)$, $y=f_2(x)$, при $a \leq x \leq b$ , и прямыми $x=a, \quad x=b $, см. рис.8, тогда ее площадь равна
\[ S=\int _a^b\left (f_1(x)-f_2(x)\right)\,dx. \]Рис 8: Площадь фигуры в декартовой системе координат.
Рассмотрим теперь случай, когда фигура представлена в полярной системе координат. Пусть ее ограничивают лучи $\varphi =\varphi_1$, $\varphi = \varphi _2$, и линия $r=R(\varphi)$, см. рис.9. Площадь маленького треугольника с углом $\Delta \varphi$ при вершине приближенно равна $\Delta S= (r^2/2)\sin (\Delta \varphi)$. Складывая, получаем интегральную сумму
\[ \Sigma = \sum _k \frac{r_k^2}{2}\sin (\Delta \varphi _k). \]Полагая $\Delta \varphi _k \rightarrow 0$ можно $\sin (\Delta \varphi _k)$ можно заменить на $\Delta \varphi _k$ (тригонометрический замечательный предел!) и в пределе получаем:
\[ S=\frac{1}{2}\int _{\varphi_1}^{\varphi_2}R^2(\varphi)d\varphi\,. \]Рис 9: Площадь фигуры в полярной системе координат.
Пример.
Задачи.